Дана задача: Фирма производит одежду двух видов: платья и костюмы. В неделю фирма продает не более 600 изделий. Для каждого платья требуется 3 м полотна, а для костюма 5 м. Фирма в неделю получает 1200 м полотна. Для шитья 1 платья требуется 30 минут, а для шитья костюма 45 минут. Оборудование может использоваться не больше 80 часов в неделю. Если прибыль от продаж платья – 50$, то от костюма – 85$. Математическая модель максимизации прибыли представляет собой:
🧠 Тематика вопроса:
Дисциплина изучает методы анализа и принятия оптимальных решений в условиях ограниченных ресурсов с применением математических моделей и алгоритмов. Рассматриваются задачи линейного, нелинейного и динамического программирования, теория игр, сетевые модели и стохастические методы. Полученные знания позволяют повышать эффективность процессов в экономике, логистике, управлении проектами и других областях, где требуется рациональное распределение ресурсов. Особое внимание уделяется практическому применению оптимизационных подходов для решения реальных задач.
Варианты ответа:
Ответ будет доступен после оплаты
📚 Похожие вопросы по этой дисциплине
- Дана задача: Фирма, имеющая лесопильный завод и фабрику, на которой изготавливается фанера, столкнулась с проблемой наиболее рационального использования лесоматериалов. Чтобы получить 1 м3 комплектов пиломатериалов, необходимо израсходовать 2.5 куб. м еловых и 7.5 куб. м пихтовых лесоматериалов. Для приготовления 100 кв.м фанеры требуется 5 куб. м еловых и 10 куб. м пихтовых материалов. Фирма имеет 80 куб. м еловых и 180 куб. м пихтовых лесоматериалов. Согласно условиям поставок, в течение планируемого периода необходимо произвести по крайней мере 10 куб. м пиломатериалов и 1200 кв. м фанеры. Доход с 1 куб. м пиломатериалов составляет 16 долл., а со 100 кв. м фанеры - 60 долл. Математическая модель максимизации дохода представляет собой:
- Дана задача: Фирма, имеющая лесопильный завод и фабрику, на которой изготавливается фанера, столкнулась с проблемой наиболее рационального использования лесоматериалов. Чтобы получить 1 м3 комплектов пиломатериалов, необходимо израсходовать 2.5 куб. м еловых и 5.5 куб. м пихтовых лесоматериалов. Для приготовления 100 кв.м фанеры требуется 5 куб. м еловых и 10 куб. м пихтовых материалов. Фирма имеет 60 куб. м еловых и 160 куб. м пихтовых лесоматериалов. Согласно условиям поставок, в течение планируемого периода необходимо произвести по крайней мере 10 куб. м пиломатериалов и 1200 кв. м фанеры. Доход с 1 куб. м пиломатериалов составляет 14 долл., а со 100 кв. м фанеры - 40 долл. Математическая модель максимизации дохода представляет собой:
- Дана задача: Из трех сортов бензина образуются две смеси. Первая состоит из 20% бензина первого сорта, 30% бензина 2-го сорта, 50% бензина 3-го сорта; вторая – 50% - 1-го, 35 % - 2-го, 15 % - 3-го сорта. Доход от продажи 1-ой смеси - 305 у.е., второй - 200 у.е. за тонну. Запасы бензина: 40 тонн 1-го сорта, 30 тонн 2-го сорта и 60 тонн 3-го сорта. Математическая модель максимизации дохода представляет собой:
- . Задача с ослабленными ограничениями возникает:
- Дана задача: Завод-производитель высокоточных элементов для автомоби¬лей выпускает два различных типа деталей: Х и Y. Завод располагает фондом рабочего времени в 4000 чел.-ч. в неделю. Для производства одной детали типа Х требуется 1 чел.-ч, а для производства одной детали типа Y — 2 чел.-ч. Производ¬ственные мощности завода позволяют выпускать максимум 2250 деталей типа Х и 1750 деталей типа Y в неделю. Каждая деталь типа Х требует 2 кг металлических стержней и 5 кг листового металла, а для производства одной детали типа Y необходимо 5 кг металлических стержней и 2 кг листового металла. Уровень запасов каждого вида металла составляет 10000 кг в неделю. Кроме того, еженедель¬но завод поставляет 600 деталей типа Х своему постоянному заказчику. Существу¬ет также профсоюзное соглашение, в соответствии с которым общее число произ¬водимых в течение одной недели деталей должно составлять не менее 1500 штук. Составить математическую модель задачи, если необходимо получить информацию, сколько деталей каждого типа следует производить, чтобы максимизировать общий доход за неделю при том, что доход от производства одной детали типа Х составляет 30 ф. ст., а от производства одной детали типа Y—40 ф. ст.? Математическая модель максимизации дохода представляет собой: