В общем случае ожидаемая доходность случайной ошибки любой акции портфеля = 0. Тогда можно утверждать, что и дисперсия случайной ошибки для любой акции портфеля в модели Шарпа также равна нулю в общем случае:

🧠 Тематика вопроса:
Данная дисциплина изучает фундаментальные принципы и методы анализа данных, включая сбор, обработку и интерпретацию информации. Рассматриваются современные инструменты и технологии, применяемые в машинном обучении, статистике и визуализации данных. Особое внимание уделяется практическому применению знаний для решения реальных задач в различных областях. Курс развивает навыки критического мышления и работы с большими массивами информации, что необходимо для успешной деятельности в условиях цифровой экономики.
Варианты ответа:
- нет, это неверно
- да, это утверждение верно;
-
это верно только для случая отрицательных значений коэффициентов
- на данный вопрос нельзя дать однозначный ответ
Ответ будет доступен после оплаты
📚 Похожие вопросы по этой дисциплине
-
С помощью показателя можно оценить степень точности регрессионного уравнения и в случае отрицательных величин коэффициента:
- Чем выше дисперсия случайной ошибки какой-то акции портфеля, тем точнее уравнение линейной регрессии описывает поведение ее доходности:
- Инвестор включил в портфель n акций и использует модель У. Шарпа. Для оценки риска этого портфеля ему необходимо вычислить:
- Инвестор использует модель У. Шарпа. Тогда для построения ГЭП ему необходимо вычислять дисперсии доходности каждой акции портфеля:
- Инвестор 10.10.05г. формирует портфель из купонных облигаций на срок до 10.10.07г. В портфель включается облигация, срок погашения которой 05.06.06г. От этой облигации инвестор намерен получить доход за счет: