📚 Все вопросы
Вопросы по дисциплине: Фотография Сбросить фильтр
Вопрос Действия
1601 Проведено четыре измерения (без систематических ошибок) некоторой случайной величины (в мм): 8, 9, x3, 12. Несмещенная оценка математического ожидания равна 10. Найдите алгоритм нахождения выборочной дисперсии. Открыть
1602 Дана выборка (52, 42, 40, 38, 37). Вычислить несмещенные оценки среднего значения µ, дисперсии σ2 и стандартного отклонения σ генеральной совокупности. Запишите формулы их нахождения. Открыть
1603 Используя критерий Пирсона, проверяется гипотеза о нормальном распределении генеральной совокупности. Что следует предпринять для вычисления числа степеней свободы? Открыть
1604 Требуется найти вероятность того, что из 8 случайно выбранных для контроля студентов домашнюю работу сделали 6 человек, при условии, что на занятиях по теории вероятностей из 20 человек только 15 сделали домашнюю работу. Что следует предпринять, чтобы решить данную задачу? Открыть
1605 Изображение Открыть
1606 Оператор обслуживает три линии производства, вероятности выхода из строя каждой производственной линии в течение смены соответственно равны 0,2; 0,5; 0,1. Составить закон распределения числа линий, не требующих ремонта в течение смены. Что следует предпринять? Открыть
1607 Требуется определить, сколько различных пятизначных чисел можно составить из цифр 4, 5, 6, если четверка встречается один раз, пятерка– два раза, шестерка – два раза? Что следует предпринять, чтобы решить данную задачу? Открыть
1608 Требуется определить, сколькими способами можно выбрать дежурного и старосту из 18 учащихся класса. Что следует предпринять, чтобы решить данную задачу? Открыть
1609 Требуется найти вероятность того, что наугад выбранный человек — дальтоник, если выбор производится из группы, содержащей равное число мужчин и женщин, причем известно, что 5% мужчин и 0.25% женщин — дальтоники. Что следует предпринять, чтобы решить данную задачу? Открыть
1610 Требуется найти у кого больше вероятность вытащить счастливый билет: у того, кто подошел первым, или у того, кто подошел вторым. Если среди 25 экзаменационных билетов имеется 5 счастливых и студенты подходят за билетами один за другим по очереди. Что следует предпринять, чтобы решить данную задачу? Открыть