📚 Все вопросы
Вопросы по дисциплине: Исследование операций и методы оптимизации Сбросить фильтр
Вопрос Действия
121 Дана задача: Завод-производитель комплектующих для грузовиков выпускает два различных типа деталей: Х и Y. Завод располагает фондом рабочего времени в 4000 чел.-ч. в неделю. Для производства одной детали типа Х требуется 1 чел.-ч, а для производства одной детали типа Y — 2 чел.-ч. Производ¬ственные мощности завода позволяют выпускать максимум 800 деталей типа Х и 720 деталей типа Y в неделю. Каждая деталь типа Х требует 2 кг металлических стержней и 5 кг листового металла, а для производства одной детали типа Y необходимо 5 кг металлических стержней и 2 кг листового металла. Уровень запасов каждого вида металла составляет 10000 кг в неделю. Кроме того, еженедель¬но завод поставляет 400 деталей типа Х своему постоянному заказчику. Общее число произ¬водимых в течение одной недели деталей должно составлять не менее 320 штук. Доход от производства одной детали типа Х составляет 30 ф. ст., а от производства одной детали типа Y—40 ф. ст. Математическая модель максимизации дохода представляет собой: Открыть
122 Чтобы определить разрешающий элемент в симплекс-таблице Открыть
123 Решение задачи двойственного симплекс-метода заканчивается Открыть
124 Каноническая задача линейного программирования в векторно-матричной форме выглядит как Открыть
125 В канонической задаче линейного программирования m ограничений и n неизвестных (m Открыть
126 При решении задачи коммивояжера методом ветвей и границ, верно, что: Открыть
127 Начальный этап алгоритма метода Зойтендейка подразумевает: Открыть
128 Если целевая функция прямой задачи в стандартной форме минимизируется, то для составления задачи, двойственной к данной Открыть
129 Редуцированной матрицей является: Открыть
130 Если в исходной задаче в оптимальном плане основная переменная х2* =6, то о соответствующей ей дополнительной переменной y5* двойственной задачи можно сказать, что (найдите наиболее точный ответ) Открыть