📚 Все вопросы
Вопросы по дисциплине: Дифференциальные и разностные уравнения Сбросить фильтр
Вопрос Действия
11 Заменяя в левой части однородного дифференциального уравнения с постоянными коэффициентами искомую функцию y некоторой переменной k, а производные - на степени, соответствующие порядку производных, получим характеристический многочлен дифференциального уравнения. Открыть
12 Если характеристический многочлен приравнять к степени дифференциального уравнения, получим характеристическое уравнение. Открыть
13 Из приведенного списка выберите функции, НЕ являющиеся однородными. Открыть
14 Общее решение линейного неоднородного дифференциального уравнения в некоторой области есть сумма любого его решения и общего решения соответствующего линейного однородного дифференциального уравнения. Открыть
15 Если определитель Вронского для линейной однородной системы с непрерывными на отрезке [a,b] коэффициентами aij(x), равен нулю хотя бы в одной точке x0 этого отрезка, то решения y1, y2,..., yn линейно зависимы на этом отрезке и, следовательно, определитель Вронского равен нулю на всем отрезке. Открыть
16 Совокупность решений y1, y2,..., yn системы дифференциальных уравнений есть фундаментальная система решений на [a,b], если определитель Вронского не обращается в ноль ни в одной точке [a,b]. Открыть
17 Суть метода исключения при решении систем дифференциальных уравнений заключается в дифференцировании одного уравнения и подстановке в него параметров из других уравнений так, чтобы исключить все неизвестные функции, кроме одной. Открыть
18 Если каждое уравнение системы дифференциальных уравнений представляет собой линейное уравнение первого порядка с производной от одной неизвестной функции, разрешенное относительно этой производной, то система называется линейной неоднородной. Открыть
19 Набор n соотношений, связывающих независимую переменную, n неизвестных функций и n их первых производных называется системой дифференциальных уравнений n-го порядка. Открыть
20 Система дифференциальных уравнений называется линейной, если она линейна относительно всех неизвестных функций и их производных. Открыть